“你用放大镜再看看,注意冥王星的左上方。” 徐云接过放大镜,再次看了起来。 这一次,他终于发现了某些细微的异常: 只见在冥王星光点的左上方,此时赫然存在着某个微小的凸起! 这外凸大约占了光点1/5的区域,不仔细观看几乎无法辨明。 与之相对的则是冥王星的右上角,那里却是一片光洁的圆弧。 见此情形。 徐云的心中顿时一咯噔,那股不好的念头愈发清晰了起来。 高斯并没有注意到徐云僵硬的表情,而是指了指相片,又问道: “怎么样,看到了吗?” 徐云只能点点头,斟酌片刻,对高斯说道: “高斯教授,有没有可能是摄像机在拍摄时出现的光圈异常?” “毕竟这种图像在放大后存在像素差,似乎说明不了什么吧?” 高斯闻言很果断的摇了摇头,指着桌上的其他图像说道: “你错了,罗峰同学,有异常凸起的不止是这一张照片。” “据麦克斯韦同学的观察,大约有最少八张相片都可以观测到这个异常,并且普遍集中在1840-1845年之间。” 徐云闻言,拿着照片的手微微一抖。 接着他干笑两声,看向高斯,说道: “所以高斯教授,您的意思是……” 高斯随手拿起一张相片,凝视了它几秒钟,而后缓缓说道: “如果我没猜错的话,图像上的那个异常,或许就是柯南星的一颗伴星——注意,是伴星,而非卫星。” “并且从图像上估计……它的直径未必就比柯南星小多少。” 徐云闻言眼观鼻鼻观口口观心,一脸淡定的模样。 但此时此刻,他的心中却掀起了惊涛骇浪。 妈耶! 出大事儿了! 先前提及过。 海王星外头的太系由近到远,可再区分成柯伊伯带及奥尔特云区带。 这部分区域内的天体由于所在位置或运行轨道超出海王星轨道范围,所以都被叫做外海王星天体。 其中冥王星是,便属外海王星天体的标准模板。 它距离地球的平均距离接近40个天文单位,远地点约73.76亿公里,近地点约44.37亿公里。 同时冥王星绕行太一圈所需时间在也是所有行星中最长的: 公转一周需要大约248个地球年,自转一天是六个多地球。 所以徐云有时候还郁闷的——他说的更三万又没说是地球,如果按照冥王星来计算的话,他的更新量是超标的叻…… 如果用金星的243个地球来算的话…… 咳咳,言归正传。 总而言之。 在这种距离条件下,通过摄像机记录下来的图像是很模糊的。 眼观测起来都非常困难,就更别提看到它的轮廓了。 但是——重点来了,有一种情况比较例外。 那就是行星冲阶段。 有些老批可能会把这个词分开来读,但实际上,它是指一种特殊的天文现象。 所谓星体冲。 就是指它在绕公转过程中运行到与地球、太大致成一直线,而地球恰好位于太和星体之间的一种天文现象。 星体在冲的位置时是最亮的,此时一般也是观测它的绝佳时机。 比如读者们看到这章后的两天,也就是2022年7月20,就是冥王星的冲时刻。 20前后几,待到每天太一落山。 冥王星就会从东方地平线上升起,几乎整夜可见。 当然了。 这里指的仍旧是天文望远镜。 大家都知道,系内行星的轨道都是个椭圆。 其中冥王星在太系最外侧,并且它的平均公转速度仅有大约4.7公里/秒。 地球则在相对内侧,平均公转速度达到了30公里/秒。 所以说几乎每隔一段时间,冥王星就会被地球追上一次,被动的形成冲现象。 而很凑巧的是。 1843年的9月15,便是冥王星的一个冲节点,并且是前后一百年内最亮的一次。 另外再提一个知识。 那就是1937年电望远镜发明出来之前,决定观测效果的核心因素,只有望远镜的口径以及镜片的材质两点。 例如1930年冥王星发现者汤博。 他所使用的天文望远镜不过42英寸,也就是1066.8毫米,比现在空地上的这架‘多多罗’还要小很多呢。 毕竟说一千道一万,汤博所工作的洛厄尔天文台终归是个私人天文台。 虽然创始人洛厄尔贼拉有钱,但和格林威治天文台相比还是不够看的。 汤博之所以能发现冥王星,很大原因要归结到运气好——洛厄尔一开始的目的其实是寻找火星生命来着。 横向比较的话。 汤博1930年使用的娜迦望远镜,在1850年的欧洲连前十都排不到。 实际排名大概13-15之间,和穆查丘斯罗克天文台的镇馆之宝差不多。 更更更关键的是。 冥王星是唯一已知的有大气层包裹的矮行星。 当冥王星位于其近点时。 大气会是气体状态。 而当冥王星位于其远点时。 大气层中的气体就会因为低温而凝结,并像雪花一样飘落。 所以在照片中,它的图像反馈会无限接近于‘写实’的概念。 因此在以上诸多原因的加持下。 1843年冥王星冲前后,有部分照片便拍下了堪称这个时代最清晰的冥王星照片。 将这些这些照片用放大镜放大,你勉强可以看到一个小凸起,也就是冥王星的卫星…… 冥卫一。 当然了。 令徐云手抖的原因并非是高斯发现了‘柯南星’卫星这么个简单的事实,而是因为…… “奇怪了。” 只见高斯有些烦躁的挠了挠头发,费解的说道: “柯南星的角直径是0.065″-0.115″,扁率又小于1%,也就是说它的转轴倾角会非常非常的大。” “这种情况下它能存在一颗伴星,那么这颗伴星首先会汐锁定,其次它的直径绝不可能小到哪里去——它与柯南星的比值,至少要比地月两星来的大。” “可这样一来,柯南星的质心就必然会在星体之外,那么我们之前计算出来的偏差参量就有问题了……” “这到底是怎么回事呢……” 高斯的眉头紧紧拧成一团,手指有规律的在桌面上笃笃作响,神凝重而又疑惑。 按照他此前的计算。 柯南星周围大概率会存在卫星,数量说不定还不少,毕竟这是宇宙中很常见的事儿。 哪怕是地球这么个倒霉蛋,也都有颗月亮陪着呢。 但存在伴星就很令人惊讶了…… 伴星的概念相对常见于恒星系统,比如双星系统、三星系统等等——赫赫有名的三体就是三星系统,原型是南门二。 太的伴星目前还没有发现,以前科学界对于太伴星的猜测是在太的另一面,不过眼下这个猜测已经被否定了。 目前相对有市场的叫做nemesis假说,也叫作黑暗伴星假说——记不下来的可以把它分成neme+sis,咳咳…… 这个假说提出来已经有好些年了,它认为太有一个类似红矮星的伴星存在于奥尔特星云附近。 近点一光年,远点三光年。 这个假说倒是可以解释地球的周期大灭绝原因,不过最近有很多陨石方面的证据表示陨石撞击地球并没有周期,所以这个假说接受度依旧不高。 当然了。 相比于恒星,行星存在伴星的情况也不少见。 比如hd158259恒星系内,就有一颗行星拥有五颗伴星。BzTdSw.COm |